Multilayered Semantic Social Network Modeling by Ontology-Based User Profiles Clustering: Application to Collaborative Filtering

نویسندگان

  • Iván Cantador
  • Pablo Castells
چکیده

We propose a multilayered semantic social network model that offers different views of common interests underlying a community of people. The applicability of the proposed model to a collaborative filtering system is empirically studied. Starting from a number of ontology-based user profiles and taking into account their common preferences, we automatically cluster the domain concept space. With the obtained semantic clusters, similarities among individuals are identified at multiple semantic preference layers, and emergent, layered social networks are defined, suitable to be used in collaborative environments and content recommenders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

  One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...

متن کامل

Building Emergent Social Networks and Group Profiles by Semantic User Preference Clustering

This paper presents a novel approach to automatic semantic social network construction based on semantic user preference clustering. Considering a number of users, each of them with an associated ontology-based profile, we propose a strategy that clusters the concepts of the reference ontology according to user preferences of these concepts, and then determines which clusters are more appropria...

متن کامل

Building Emergent Social Networks by Semantic User Preference Clustering

This paper presents a novel approach to automatic semantic social network construction based on semantic user preference clustering. Considering a number of users, each of them with an associated ontology-based profile, we propose a strategy that clusters the concepts of the reference ontology according to user preferences of these concepts, and then determines which clusters are more appropria...

متن کامل

یک سامانه توصیه‎گر ترکیبی با استفاده از اعتماد و خوشه‎بندی دوجهته به‎منظور افزایش کارایی پالایش‎گروهی

In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...

متن کامل

Social Semantic Collaborative Filtering for Digital Libraries

The most popular collaborative filtering implementations require either a critical mass of referenced resources or a lot of active users. Other solutions are based on finding a referral with an expertise on the given domain of discourse. In this article we present the social semantic collaborative filtering solution to information retrieval. We describe how the concept of users' managed collect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006